Firework: Data Processing and Sharing for Hybrid Cloud-Edge Analytics

نویسندگان

  • Quan Zhang
  • Qingyang Zhang
  • Weisong Shi
  • Hong Zhong
چکیده

Now we are entering the era of the Internet of Everything (IoE) and billions of sensors and actuators are connected to the network. As one of the most sophisticated IoE applications, real-time video analytics is promising to significantly improve public safety, business intelligence, and healthcare & life science, among others. However, cloudcentric video analytics requires that all video data must be preloaded to a centralized cluster or the cloud, which suffers from high response latency and high cost of data transmission, given the scale of zettabytes of video data generated by IoE devices. Moreover, video data is rarely shared among multiple stakeholders due to various concerns, which restricts the practical deployment of video analytics that takes advantages of many data sources to make smart decisions. Furthermore, there is no efficient programming interface for developers and users to easily program and deploy IoE applications across geographically distributed computation resources. In this paper, we present a new computing framework, Firework, which facilitates distributed data processing and sharing for IoE applications via a virtual shared data view and service composition. We designed an easy-to-use programming interface for Firework to allow developers to program on Firework. This paper describes the system design, implementation, and programming interface of Firework. The experimental results of a video analytics application demonstrate that Firework reduces up to 19.52% of response latency and at least 72.77% of network bandwidth cost, compared to a cloud-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Secret Sharing-based Storage System for Cloud-based Internet of Things

Internet of things (IoTs) is the newfound information architecture based on the internet that develops interactions between objects and services in a secure and reliable environment. As the availability of many smart devices rises, secure and scalable mass storage systems for aggregate data is required in IoTs applications. In this paper, we propose a new method for storing aggregate data in Io...

متن کامل

\mathbb ECHO : An Adaptive Orchestration Platform for Hybrid Dataflows across Cloud and Edge

The Internet of Things (IoT) is offering unprecedented observational data that are used for managing Smart City utilities. Edge and Fog gateway devices are an integral part of IoT deployments to acquire real-time data and enact controls. Recently, Edge-computing is emerging as first-class paradigm to complement Cloud-centric analytics. But a key limitation is the lack of a platform-as-aservice ...

متن کامل

Distributed Scheduling of Event Analytics across Edge and Cloud

Internet of Things (IoT) domains generate large volumes of high velocity event streams from sensors, which need to be analyzed with low latency to drive decisions. Complex Event Processing (CEP) is a Big Data technique to enable such analytics, and is traditionally performed on Cloud Virtual Machines (VM). Leveraging captive IoT edge resources in combination with Cloud VMs can offer better perf...

متن کامل

A Hybrid ICT-Solution for Smart Meter Data Analytics

Smart meters are increasingly used worldwide. Smart meters are the advanced meters capable of measuring energy consumption at a fine-grained time interval, e.g., every 15 minutes. Smart meter data are typically bundled with social economic data in analytics, such as meter geographic locations, weather conditions and user information, which makes the data sets very sizable and the analytics comp...

متن کامل

Adaptive Energy-aware Scheduling of Dynamic Event Analytics across Edge and Cloud Resources

The growing deployment of sensors as part of Internet of Things (IoT) is generating thousands of event streams. Complex Event Processing (CEP) queries offer a useful paradigm for rapid decision-making over such data sources. While often centralized in the Cloud, the deployment of capable edge devices on the field motivates the need for cooperative event analytics that span Edge and Cloud comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018